Home Mechanical Ventilation Anthony Bateman ## What is Long Term Ventilation? - * LTV is the provision of respiratory support to individuals with non-acute respiratory failure - Progression of expected disease Genetic disorders, inherited and acquired neuromuscular disorders - * Failure of weaning from acute respiratory support - It does not require the sophistication of ICU setting ## Conditions known to benefit or could benefit from LTMV #### Known - * Kyphoscoliosis - * Spinal cord injury ≥ C4, Bilateral diaphragm paralysis - * MND, Post Polio, Spinal muscular atrophy (SMA) - * Duchenne, Beckers, Myotonic, Pompe's - Central Alveolar Hypoventilation - * Obesity hypoventilation #### **Possible** - * Cardiac failure - * Stroke - Suppurative Lung disease ## What stops you from breathing? * Fatigue – Energy supply < Energy demand Energy supply depends on - * Inspiratory muscle blood flow - * Blood energy and O_2 substrate - * Cellular function to extract and use energy Energy demands depend on * Pressure required, time of work, efficiency of muscles and breathing system ## Lungs go up and down... #### When does respiratory failure develop #### Restriction - Principally a restrictive lung problem - * Failure to move enough air in and out - * In different stages of sleep breathing is progressively reduced ## Presentation of Respiratory Failure #### **Expected** - * Increasing SOB - * Orthopnoea - * Increased frequency and severity of chest infections - * Poor sleep - * Headache - * Daytime somnolence - Weight loss / decreased appetite #### **Emergency** - * Unable to wean from acute ventilatory support - * Cor pulmonale ### Aims and Goals #### Aims - * Improved gas exchange - * Optimized lung volume - Reduced work of breathing - * Correct hypoxaemia - Correct acidosis - * Reverse atelectasis - * Rest respiratory muscles #### Goals - * Increase life - * Promote independence - * Decrease morbidity - * Decrease hospital admissions - Improve quality of life - Be cost effective #### Spontaneous ventilation (or NPVish) #### Mechanical ventilation $$P_{tm} = 100 - (-5) = 105$$ ### What do we do about it - * Measure respiratory function at time of diagnosis - * Monitor change in physical parameters and correlate them with the person - * Inform the patient about the options of respiratory support - * Work as part of the team to provide support in all aspects of the disease ## How do we do it? #### **Symptoms** - * Epworth Score - * >9 investigate, >11 abnormal, >15 small children - * Headache - * LRTI - * Weight loss - * Cough #### Muscle weakness - * FEV1 / FVC <60% expected - * $SNIP < -60 H_2O$ - * Poor cough - * Decreased voice - * Orthopnoea - Fluoroscopy diaphragm - Bulbar problems affect measurement ## How do we do it? ## Before ## After ## How is it done? #### NON INVASIVE - Nocturnal to ~16h day - Bulbar function - Facemask - Nasal mask / pillows - Mouthpiece - Bilevel turbine with leak from CO2 elimination #### INVASIVE (trach) - >16h day - Poor bulbar function - Uncuffed trachey - Complex ventilators pressure control to allow for leak - Prolonged insp time for speech #### NIV - Ventilates predominantly upper lobes / zones - * Does prevent atelectasis - * Need assisted cough - * Efficiency of ventilation OK - * Nasal bridge breakdown - * Cumbersome / cosmetic issues - * Speech takes time - Frog breathing, Sipping from ventilator allow increased periods off vent #### Invasive - * Ventilate all lobes - PEEP to prevent atelectasis may not be required - * Allows access to airway - Speech well maintained - Can alternate cuffed and uncuffed - Carer demands greater - Costs perceived as greater ## Assisted cough You are going to see a lot more of these.. - Rapid insufflation with high pressures - * Negative pressure abruptly - * Moves secretions - * "it was like having my lungs pulled out through my throat..." - Need to get secretion out of oropharynx too ## Other models are available.. ## Diaphragmatic pacing - * Works in quadraplegic patients - * Trials beginning in ALS/MND - * May delay the need for ventilation in progressive disease ## What is weaning #### Weaning is... - * Spontaneous breathing - * Discontinuation of mechanical ventilation and the removal of an artificial airway - * Weaning begins at the time of the first spontaneous breathing trial (SBT) - * Difficult weaning > 3 SBT or >7 days after first SBT - * Prolonged mechanical ventilation >21 days with more than 6 hrs mechanical ventilation / day ### When to wean? - * Recovered from illness - * Adequate gas exchange - * Appropriate neuromuscular function - * Stable CV function - * Weaning may represent 40% of ventilated time - * Start to wean as soon as the ETT goes in ## Who decides when someone is ready? - * Daily screening / daily interruption of sedation - * Protocol screening and susbsequent SBT not by doctors (Ely 1996) - * Generally aim to be on the minimum supprot necessary - * Weaning may be entering a new era (Metha et al JAMA 2012) # How do you assess if someone is ready to wean? Objective Subjective - $* P_aO_2/FiO_2 > 150-200$ - * PEEP 5-8 cm H_2O - * $FiO_2 < 0.5$ - * pH > 7.25 - * RR < 30 38 BPM - * Vt 4-6 ml/kg - * RSBI (RR/Vt) 60-105 - * Haemodynamic stability - * Absence of myocardial ischaemia - * Minimal vasopressors CV instability - Improving CXR - Adequate muscle strength ## Spontaneous breathing trial #### Dip toe in water - * Pass SBT 60 80% chance of extubation - * T-piece - * CPAP 5 - * PS 7 - * 30 60 or 120 minutes #### Signs of failure - $* SpO_2 < 90\%$ - * PaO₂ < 6-8 Kpa - * pH<7.32 - * Increase in PaCO $_2$ 1.5 Kpa - * RR>30, Increased by >50% - * CV instability - Depressed deteriorating GCS - Sweating discomfort ## Consequences of delay #### **Delayed extubation** * Increased VAP, airway trauma, ICU stay #### Failed extubation / reintubation - * Failed reintubation - * 8x increase in nosocomial pneumonia - * 6-12x increase in mortality ## How to become a weaner king... - * Minimum support required right from start - * Look to reduce support all day every day - * But don't reduce at night - * Look to minimise sedation - * Have a plan unit protocol or bespoke - * Make it someone's responsibility - * 1994 Frequent LRTI, Headaches, day time sleepiness, poor appetite - * NIV secretions / plugging - * 1996 Tracheostomy - * Initially the tracheotomy was quite uncomfortable and difficult to breathe with, which was scary. - * However, after a few months' recovery and adjustment I suddenly had a new lease for life. I had more energy, it was easier to talk, my appetite improved dramatically, more importantly secretions could be easily suctioned from my lungs through the tracheotomy, significantly reducing chest infections. - It definitely was the correct decision as it has allowed me to survive with a good quality of life for much longer. ## A Life worth living - * Holidays / air travel - * Concerts - * Independent living - * University - * Aiming for 4th and 5th decades - * www.alifeworthlivingfilm.com ## A life worth living... - * Patients should not be denied access to healthcare - * Quality and quantity of life are unknown - * Post op care should focus on the elements of disability as much as physiological and operative concerns