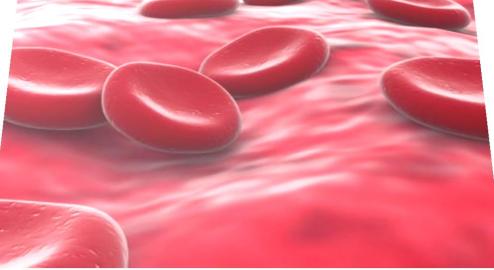
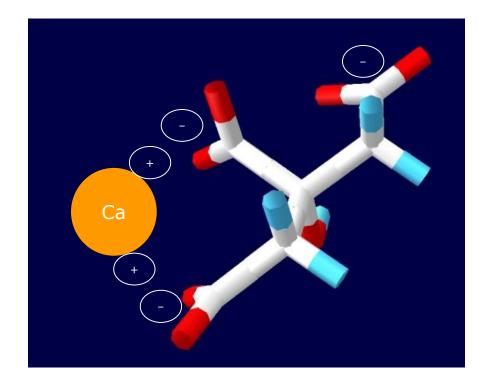


Principles and Benefits of Citrate Anticoagulation

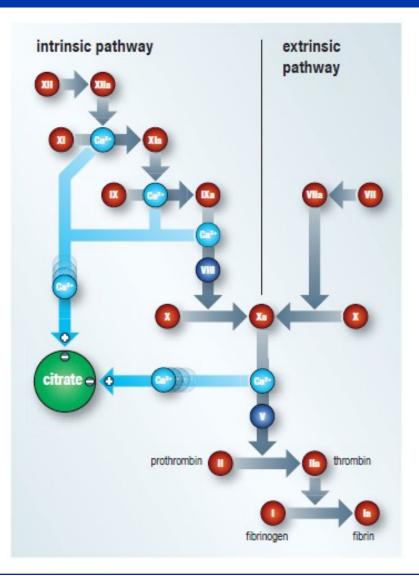
Buddy-Joe Paris


Clinical Nurse Specialist Fresenius Medical care

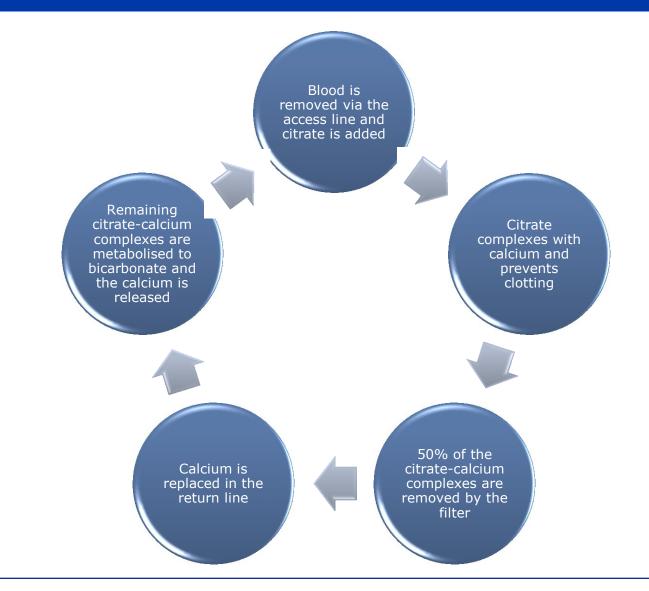
Edinburgh Critical Care, Research Group: What's new in ICU


The Use of Citrate

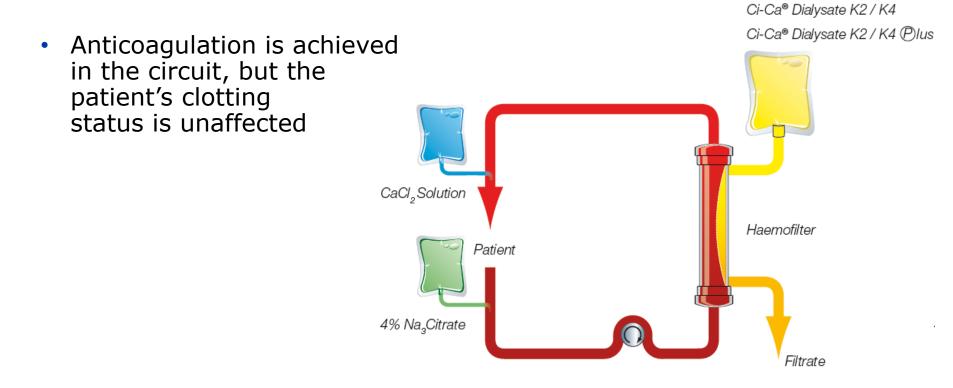
- Citrate has been used for many years across a variety of medical applications, for example, it is widely used for the storage of red blood cells ²²
- As early as 1990, clinicians began to see the possibilities for utilising citrate as a regional anticoagulant in CRRT¹
- Fresenius has extensive experience with regional citrate anticoagulation, with the commercial launch of Ci-Ca[®] in February 2006 after many years of research and development


Anticoagulation with citrate utilises a process called 'chelation'

Citrate forms a complex with the Ca²⁺ ions, making them unavailable as a co-factor within the clotting cascade



Calcium and the Clotting Cascade


What Are We Doing in Citrate Anticoagulation?

Fresenius Ci-Ca® CVVHD Circuit

- Citrate solution is introduced after the access connection
- Calcium solution is infused just prior to the return connection

Fluids for Ci-Ca® Therapy

Ci-Ca Dialysates calcium free, 4 types

4% Sodium Citrate

Contains 136 mmol/L citrate

Calcium Chloride 100 mmol/L

Fluids for Citrate Therapy

Name	Language/Art. No D/GB/F/I/E/P/NL DK/S/N/FIN/CZ/ SRB/SK/TR				K∙ mmol/L	Ca++ mmol/L	Mg ⊷ mmol/L	Cl- mmol/L	HCO ₃ - mmol/L	Glucose g/L
Ci-Ca® Dialysate K2	9689201	F00003194	133	3 2	2	0	0.75	116.5	20	1
Ci-Ca® Dialysate K4	F00000431	F00003195	133	3 4	4	0	0.75	118.5	20	1
Name	Language/Art. No. D/GB/F/I/E/P/NL/ DK/S/N/FIN/CZ/ SRB/SK/TR	Language/Art. No. RUS/EST/LT/LV/ GR/H/SLO	Na⁺ mmol/L	K∙ mmol/I	Ca++ L mmol/	Mg ↔ ′L mmol/L	Cl [.] . mmol/L	HCO ₃ - mmol/L	inorganic Phosphate mmol/L	Glucose g/L
Ci-Ca® Dialysate K2 ()lus	F00001624	F00003579	133	2	0	1	115.75	20	1.25	1
Ci-Ca® Dialysate K4 @lus	F00001625	F00003580	133	4	0	1	117.75	20	1.25	1

- Sodium and bicarbonate are reduced to compensate for the systemic infusion of sodium citrate
- Calcium-free to minimise the citrate requirement
- Slightly increased magnesium as citrate also chelates with magnesium

Backed by Experts

- KDIGO AKI Guideline ², 2012: 'We suggest using CRRT, rather than standard • intermittent RRT, for hemodynamically unstable patients.'
- Oudemans-van Straaten et al.³, 2011: 'The full advantage of citrate • anticoagulation can only be realized, however, if its risks are well controlled by means of a sound protocol, well-trained staff, and the incorporation of a citrate module in the CRRT device."
- Zhang & Hongying ⁴, 2012: 'Regional citrate anticoagulation is superior to • systemic heparin concerning circuit life and risk of bleeding.'
- Link *et al.* ⁶, 2012: 'Regional citrate anticoagulation is an effective and safe ٠ alternative to heparin.'
- Morgera *et al.*⁷, 2009: '[The Ci-Ca CVVHD protocol] enabled an effective • treatment of acute renal failure and excellent control of acid-base status as well on the systemic ionized calcium in combination with negligible clotting issues.'

- Kalb *et al.* ⁸, 2013: 'In conclusion, the [Ci-Ca CVVHD] protocol is effective to guarantee very long filter running times enabling the delivery of high dialysis doses.'
- Schultheiß et al. ⁹, 2012: 'The sodium balance was stable during [Ci-Ca] CVVHD treatment, with sodium values being within the reference range [...] in 91 % of runs after 72 hours.'
- Schmidt *et al.* ¹⁰, 2012: 'The EMiC2 provides superior middle molecule elimination compared to the AV 1000S dialyzer without significant difference in albumin elimination.'
- Raimundo *et al.* ¹¹, 2013: 'In conclusion, [the Ci-Ca CVVHD] protocol with target systemic ionised calcium concentration in the physiologic range maintains stable PTH levels.'
- Rimmele *et al.* ¹², 2012: 'The removal of middle molecular weight molecules is higher with SHF-HD [i.e. CVVHD using EMiC2]. Albumin loss was limited in both groups, even with SHF-HD.'

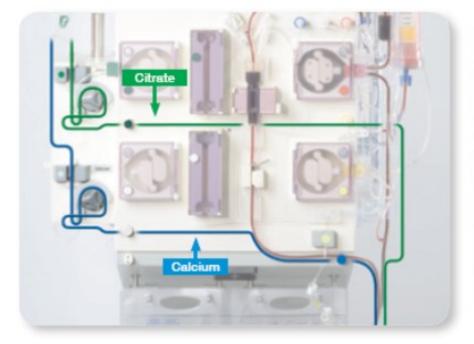
Benefits of Regional Citrate Anticoagulation

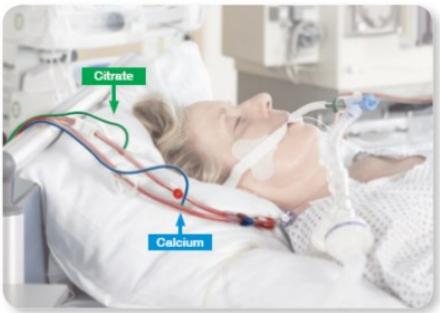
- Delivery of prescribed dialysis dose through long and reliable filter running times ⁸
- Continuous uninterrupted treatment through minimised clotting events and fewer treatment interruptions ^{4, 13, 18}
- Reduced risk of bleeding compared to systemic anticoagulation with heparin, allowing treatment even where heparin is contraindicated e.g. HIT ^{4, 15, 16, 17, 18}
- Fewer blood transfusions related to less bleeding incidents and re-priming of circuits) compared to heparin ^{15, 16, 17, 18}
- Nursing time released for patient care through reduction in machine interactions when compared with heparin ^{8, 19}
- Prolonged lifespan of the extracorporeal circuit reducing circuit usage – compared to heparin ^{4, 13, 18}
- Lower blood flow rates with CVVHD compared to CVVH smaller access catheter to be used

All patients .. but especially

- Patient's pre- or postoperatively where systemic anticoagulation may be contraindicated
- Patients with significant coagulopathy related to sepsis, large volume transfusion etc.
- Trauma patients with potentially undiagnosed bleeding points
- Patients where surgical wound healing may be compromised by systemic anticoagulation
- Patients with profound cardiovascular instability for whom high blood flows would be detrimental

Regional Citrate Anticoagulation in CRRT Management of Citrate Anticoagulation with multiFiltrate Ci-Ca[®]


UK/ABT/MFT/0415/0005


Fully Integrated Citrate & Calcium Pumps to Safeguard

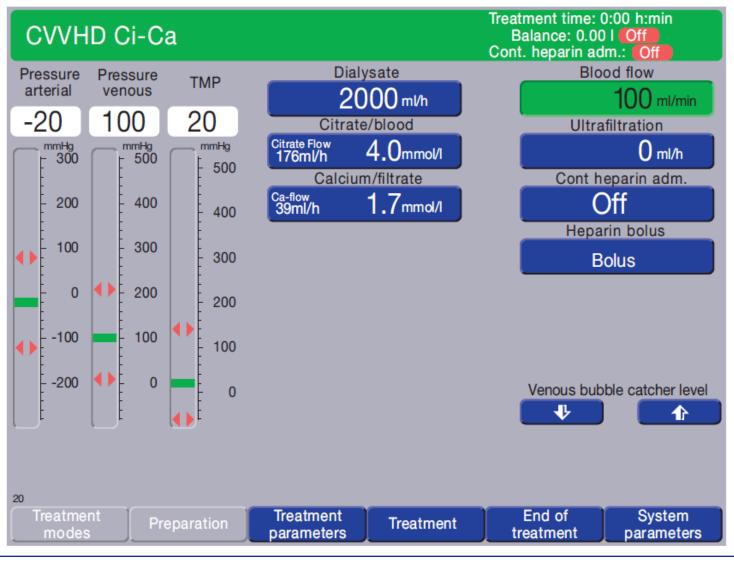
Integrated Citrate & Calcium Lines to Safeguard

Mechanically Different Citrate & Calcium Connectors to Safeguard

Citrate connector

Calcium connector

Colour Coded Connectors to Safeguard

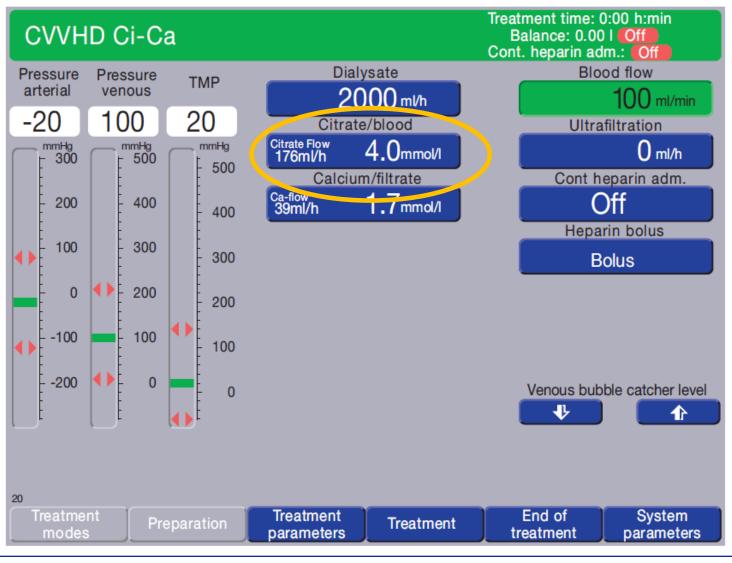

Maintaining Dialysis and Blood Flow Rates

Overall dose ≈ Dialysate flow	Blood flow	Citrate dose	Calcium dose	
1600 mL/h	80 mL/min	4.0 mmol/L	1.7 mmol/L	
2000 mL/h	100 mL/min	4.0 mmol/L	1.7 mmol/L	
2200 mL/h	110 mL/min	4.0 mmol/L	1.7 mmol/L	
2600 mL/h	130 mL/min	4.0 mmol/L	1.7 mmol/L	
3000 mL/h	150 mL/min	4.0 mmol/L	1.7 mmol/L	
3200 mL/h	160 mL/min	4.0 mmol/L	1.7 mmol/L	
3600 mL/h	180 mL/min	4.0 mmol/L	1.7 mmol/L	

- The dialysate to blood flow ratio should be at a constant numerical ratio of 20:1 (corresponding to a physical flow ratio of 1.3)
- If the patient's acid-base balance is deranged this ratio can be adjusted

Display During Citrate Anticoagulation

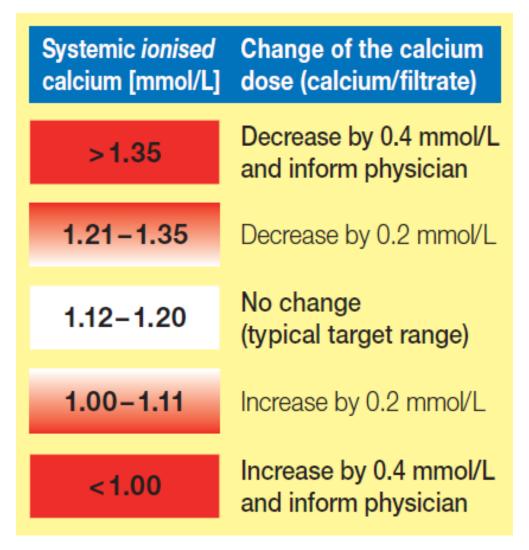
UK/ABT/MFT/0415/0005


Fresenius Medical Care © Copyright, 2015

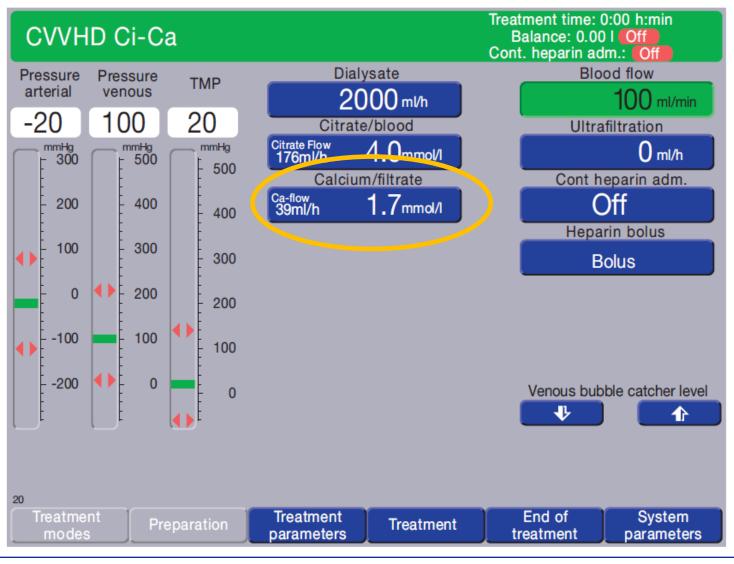
Post-Filter Ionised Calcium

Postfilter <i>ionised</i> calcium [mmol/L]	Change of the citrate dose (citrate/blood)		
>0.40	Increase by 0.2 mmol/L and inform physician		
0.35-0.40	Increase by 0.1 mmol/L		
0.25-0.34	No change (typical target range)		
0.20-0.24	Decrease by 0.1 mmol/L		
< 0.20	Decrease by 0.2 mmol/L and inform physician		

Adjust the Citrate Flow



UK/ABT/MFT/0415/0005


Fresenius Medical Care © Copyright, 2015

Systemic Ionised Calcium

Adjust the Calcium Flow

UK/ABT/MFT/0415/0005

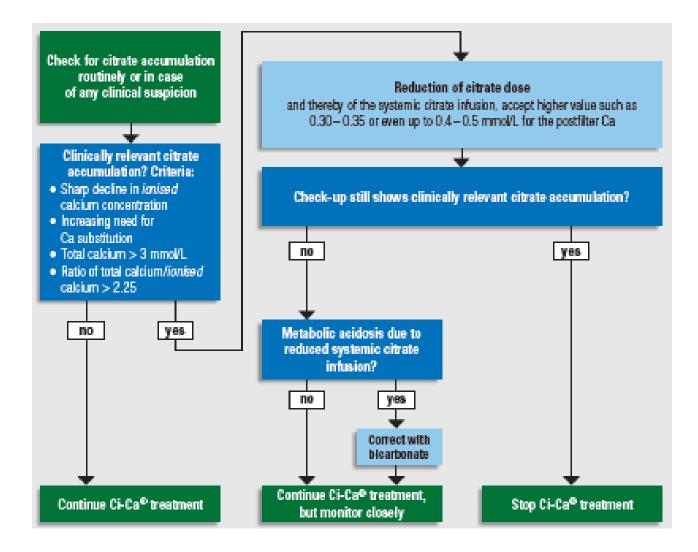
Fresenius Medical Care © Copyright, 2015

Regional Citrate Anticoagulation in CRRT Clinical Signs of Poor Citrate Metabolism and the Management Strategy With multiFiltrate Ci-Ca®

UK/ABT/MFT/0415/0005

Potential Complications of Citrate Anticoagulation

- Heparin Induced Thrombocytopenia occurs in 3 5% of patients receiving standard heparin therapy ²⁰
- Reduced citrate metabolism occurs in 3.6% of patients ²¹


The clinically diagnosable parameters that indicate impaired citrate metabolism are:

- Decreasing systemic ionised calcium level despite increasing calcium supplementation as per protocol
- Increased systemic total calcium
- A total calcium to ionised calcium ratio above 2.25 (this will be checked by the renal team / consultant)
- Increasing metabolic acidosis

If the patient demonstrates any of the above clinical signs, or the calcium infusion rate is running at greater than 2.1mmol/L, this could be indicative of poor citrate metabolism

Possible Strategy for Poor Citrate Metabolism

Revised Sliding Scale for Poor Citrate Metabolism

Postfilter <i>ionised</i> calcium [mmol/L]	Change of the citrate dose (citrate/blood)		
>0.40	Increase by 0.2 mmol/L and inform physician		
0.35-0.40	Increase by 0.1 mmol/L		
0.25-0.34	No change (typical target range)		
0.20-0.24	Decrease by 0.1 mmol/L		
< 0.20	Decrease by 0.2 mmol/L and inform physician		

Postfilter <i>ionised</i> calcium [mmol/L]	Change of the citrate dose (citrate/blood)
>0.40	Increase by 0.1 mmol/L
0.35-0.40	No change (typical target range)
0.25-0.34	Decrease by 0.1 mmol/L
0.20-0.24	Decrease by 0.2 mmol/L and inform physician

Regional Citrate Anticoagulation in CRRT Using Citrate to Manipulate Acid-Base Balance

UK/ABT/MFT/0415/0005

Maintaining Dialysis and Blood Flow Rates

Overall dose ≈ Dialysate flow	Blood flow	Citrate dose	Calcium dose	
1600 mL/h	80 mL/min	4.0 mmol/L	1.7 mmol/L	
2000 mL/h	100 mL/min	4.0 mmol/L	1.7 mmol/L	
2200 mL/h	110 mL/min	4.0 mmol/L	1.7 mmol/L	
2600 mL/h	130 mL/min	4.0 mmol/L	1.7 mmol/L	
3000 mL/h	150 mL/min	4.0 mmol/L	1.7 mmol/L	
3200 mL/h	160 mL/min	4.0 mmol/L	1.7 mmol/L	
3600 mL/h	180 mL/min	4.0 mmol/L	1.7 mmol/L	

- The dialysate to blood flow ratio should be at a constant numerical ratio of 20:1 (corresponding to a physical flow ratio of 1.3)
- If the patient's acid-base balance is deranged this ratio can be adjusted

- First review the patient, treat any underlying condition and ensure dialysate dose is appropriate
- Check that the dialysate and blood flow rates are set according to the protocol

To correct an acidosis *either*:

 Decrease the dialysate flow (a decrease of 20% will increase the serum bicarbonate level by approximately 4mmol/L)

or

 Increase the blood flow rate (an increase of 20% to the blood flow rate will increase the serum bicarbonate level by approximately 4mmol/L)

- First review the patient, treat any underlying condition and ensure dialysate dose is appropriate
- Check that the dialysate and blood flow rates are set according to the protocol.

To correct an alkalosis *either*:

 Increase the dialysate flow (an increase of 20% will decrease the serum bicarbonate level by approximately 4mmol/L)

or

 Decrease the blood flow rate (a decrease of 20% to the blood flow rate will decrease the serum bicarbonate level by approximately 4mmol/L)

Thank You

UK/ABT/MFT/0415/0005